Software Engineering

Software engineering is the creation of software using a process similar to other engineering disciplines. It allows for software to be reliable and developed within time and cost estimates. The software engineering curriculum prepares students for a career in reliable, economical software development.

Programming is only one phase (construction) of software engineering. There are many other aspects of the software engineering process, such as requirements definition, architectural design, and quality assurance, which need to be applied in order to develop reliable software on time and within budget constraints. The software engineering curriculum provides students a solid background in both the theory and practice of all phases in the software engineering process, beginning with their first course of study in the Department of Computer Science and Software Engineering, and continuing to the end of the senior year.

Since software is a non-physical product developed and executed on computers, the software engineering curriculum has computer science as its primary engineering science. The computer science courses taken by software engineering majors include the study of algorithms, data structures, database concepts, computer architecture, programming languages and operating systems. Software engineering majors also complete important courses in other closely related fields, such as discrete mathematics, digital logic design, and engineering statistics.

Coverage of software engineering topics begins in a three-term introduction to software development during the freshman and sophomore years. This study continues with coverage of core software engineering areas in the junior year, including software requirements, software architecture, software design, software project management, software construction, software maintenance, software evolution, software quality assurance, and formal methods in software specification and design. All of these courses include individual and team projects relevant to that particular area of software engineering. These projects generally include both written and oral presentations, building upon a technical communication course which introduces the student to the skills necessary for this important aspect of being a software professional. Throughout the senior year, a capstone team project develops and delivers software for a “real-world” client, which is put on display locally at a public exposition.

Throughout society, software exists for a wide variety of application domain areas. Each student is required to take at least three courses in a particular application domain, so that RHIT software engineering graduates can more effectively apply the software engineering principles they learn to that domain area. Students can choose from a variety of domain areas, including engineering, scientific and commercial applications.

Courses in various computer science topics such as computer graphics, artificial intelligence, computer networks, computer vision, web-based information systems, and cryptography are among those available as advanced electives. In addition, free elective courses allow students to tailor their undergraduate education to their specific goals.

The department has its own local area network. This network is connected to the campus-wide network and the Internet. Laboratory machines are mostly Sun Ultra workstations. Software engineering majors have unlimited access to the department’s laboratories. Software engineering students are frequently employed by the computing center as user consultants and by the department as system managers and course assistants.

The student chapter of the Association for Computing Machinery provides seminars and other technical activities throughout the year. The national honor society in the computing and engineering disciplines, Upsilon Pi Epsilon and Tau Beta Pi, both have chapters at Rose-Hulman. Software engineering majors are also eligible to join the Order of the Engineer, which focuses on the ethical and professional responsibilities of an engineer, during the spring of their last year of study.

Software Engineering Program Educational Objectives

The software engineering program prepares its graduates for many types of careers in the computing industry as well as for graduate study in software engineering and in closely related disciplines. Within a few years after completing the software engineering degree program, our graduates will:

  1. Advance beyond their entry-level position to more responsible roles, or progress towards completion of advanced degree(s).
  2. Continue to keep pace with advancements in their disciplines, and develop professionally in response to changes in roles and responsibilities.
  3. Demonstrate that they can collaborate professionally within or outside of their disciplines at local, regional, national, or international levels.
  4. Contribute to the body of computing products, services, or knowledge.

 

Software Engineering Student Outcomes

By the time students graduate with a Software Engineering degree from Rose-Hulman, they will be able to:

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. an ability to communicate effectively with a range of audiences
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

The Computer Science and Software Engineering faculty strives to maintain an open atmosphere that encourages mutual respect and support as well as learning and sharing of knowledge.

The software engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission’s General Criteria and Program Criteria for Software and Similarly Named Engineering Programs.

SOFTWARE ENGINEERING

Summary of graduation requirements for the software engineering major

To complete the major in software engineering a student must complete the following:

  1. All required courses listed by number in the schedule of courses above: CSSE120, CSSE132, CSSE220, CSSE230, CSSE232, CSSE280, CSSE304, CSSE332, CSSE333, CSSE371, CSSE372, CSSE373, CSSE374, CSSE375, CSSE376, CSSE477, CSSE497, CSSE498, CSSE499; ECE233, MA111, MA112, MA113, MA221, MA276, MA374, MA381; PH111, PH112, CHEM111; HUMH190, ENGLH290; RHIT100.
  2. Eight credits of additional software engineering courses numbered between 300 and 492 and designated as software engineering electives. The student’s academic advisor must approve the course used to satisfy this requirement. Use of software engineering courses numbered 490 through 492 to fulfill this requirement must be approved by the department head. Credits used to satisfy any requirements for a minor or secondary major pursued by a student cannot also be used to satisfy SE elective requirements for the student’s primary or secondary major in Software Engineering. Credits used by a student pursuing a secondary major in SE that are intended to satisfy the SE elective requirement can only be used to satisfy technical or free elective requirements within the student’s primary major or not used towards any requirements within the primary major.
  3. Four additional credits of technical electives, consisting of any courses in bi- ology, chemistry, engineering (except software engineering and engineering management), geology, mathematics, biomathematics, or physics.
  4. Four additional credits of courses offered by the Department of Mathematics excluding MA351 MA356. The student’s academic advisor must approve the coursesused to satisfy this requirement.
  5. Four credits of science electives, which can be any CHEM, GEOL, PH, or BIO courses not already required for the software engineering major.
  6. Twenty-eight credits of additional courses offered by the Department of Humanities and Social Sciences; the distribution of these courses must meet the requirements of that department.
  7. Twelve credits of free elective courses.These courses must have the approval of the student’s academic advisor. Free electives may be selected from any Rose-Hulman course.
  8. A total of 192 credits.

DATA SCIENCE MAJOR (SECOND MAJOR ONLY)
Data Science is open to all students as a second major; this means that the student will have some other discipline as their primary major.  Students whose primary major is in Computer Science, Software Engineering or Mathematics will find the Data Science program the easiest since there is considerable overlap between those programs and the Data Science requirements  Students from other disciplines are also encouraged to participate, but will have to take more courses.  All students are encouraged to take the individual courses in the program, regardless of whether they wish to fulfill the second major requirements. Learn more about Data Science requirements.


Minor in Software Engineering

Advisor: CSSE Department Head

Students majoring in Computer Science may not receive a Software Engineering minor.

Required Courses

CSSE 120, Introduction to Software Development
CSSE 220, Object-Oriented Software Development
CSSE 230, Data Structures and Algorithm Analysis
CSSE 371, Software Requirements Engineering
CSSE 374, Software Design

Two additional courses in software engineering chosen from CSSE 372, 373, 375, 376, and 477, and courses identified as Software Engineering (SE) electives.

Plan of Study

Freshman Open Close
Sophomore Open Close
Junior Open Close
Senior Open Close

Total credits required: 192

Launch Root Quad